
Bigram Network Graphs

1. Create notwork graph of bigrams in Wells’ novels. Do not include stop words. Make the links
darker the more common the bigram is. Use arrows at the end of the line toward the second
word. Colorize the central node. Show a chart and your code with line-by-line comments.
#Load packages and download data
#Load required libraries
library(tidytext)
library(gutenbergr)
library(ggplot2)
library(dplyr)
library(tidyr)
library(tidyverse)
library(igraph)
library(ggraph)
library(stringr)

#Download HG Wells text data with book title as meta field----
hgwells <- gutenberg_download(c(35, 36, 5230, 159),meta_fields = "title")

1.1 Bigram counts
#Extract the bigrams with stop words
bigrams <- hgwells %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2)

#Separate bigrams for excluding stop words
separatedBigrams <- bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")

#Filter and remove stop words
filteredBigrams <- separatedBigrams %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)

Count clean bigrams excluding NA:
counts <- filteredBigrams %>%
 na.omit() %>%
 count(word1, word2, sort = TRUE)
#print the top 10 rows
head(counts, 10)

A tibble: 10 x 3
word1 word2 n
<chr> <chr> <int>

1 time traveller 54
2 beast people 44
3 heat ray 35
4 time machine 33
5 red weed 25
6 beast folk 24
7 black smoke 23
8 ulla ulla 20
9 hyena swine 17
10 thomas marvel 17

1.2 Bigram network graph
Create the igraph object from the counts data frame
bigramNetwork <- counts %>%
 #Filter bigrams with counts greater than 5
 filter(n > 5) %>%
 graph_from_data_frame()

bigramNetwork

IGRAPH d1cdd64 DN-- 113 71 --
+ attr: name (v/c), n (e/n)
+ edges from d1cdd64 (vertex names):
[1] time ->traveller beast ->people heat ->ray
[4] time ->machine red ->weed beast ->folk
[7] black ->smoke ulla ->ulla hyena ->swine
[10] thomas ->marvel dr ->kemp handling->machine
[13] hundred ->yards looked ->round white ->haired
[16] blue ->sky front ->door pine ->trees
[19] blood ->stained dressing->gown sand ->pits
[22] teddy ->henfrey fighting->machine half ->past
+ ... omitted several edges

#Convert to plot using ggraph
set.seed(2021)

#set the Directionality element
pointer <- grid::arrow(type = "closed", length = unit(.1, "inches"))

ggraph(bigramNetwork, layout = "fr") +
 #Use edge_alpha aesthetic to make links transparent based on how common or
rare the bigram is.
 #end_cap tells the arrow where to stop
 geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
 arrow = pointer, end_cap = circle(.05, 'inches')) +
 #Colorize nodes and set node size
 geom_node_point(color = "lightblue", size = 3) +
 #Anotate the nodes with the names

 geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
 #Add theme to the plot for better visualization
 theme_void()

Commentary:

The graph shows a network of most common bigrams in Well’s Novels text. Each arrow
connects an origin node to a destination node for the bigrams present in the text. A darker
arrow means that the bigrams connected are most common. In out example, Time traveller,
Time machine, Beast people are some of the most common bigrams in the text.

2. Create a count_bigrams function to reuse for counting bigrams in other texts. Comment your
code line by line.
#Count bigrams function
count_bigrams <- function(dataset){
 #Extract the bigrams with stop words
 bigrams <- dataset %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2)
 #Separate bigrams for excluding stop words
 bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ") %>%
 #Filter and remove stop words
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)%>%
 # Count clean bigrams excluding NA:

 na.omit() %>%
 count(word1, word2, sort = TRUE)
}

3. Create a visualize_bigrams function to reuse for visualizing network graphs of other texts.
Comment your code line by line.Show an example network graph.
#Visualize bigrams function
visualize_bigrams <- function(datasetBigrams){
 set.seed(2021)
 #set the Directionality element
 pointer <- grid::arrow(type = "closed", length = unit(.1, "inches"))

 datasetBigrams %>%
 graph_from_data_frame() %>%
 ggraph(layout = "fr") +
 #Use edge_alpha aesthetic to make links transparent based on how common
or rare the bigram is.
 #end_cap tells the arrow where to stop
 geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
 arrow = pointer, end_cap = circle(.05, 'inches')) +
 #Colorize nodes and set node size
 geom_node_point(color = "lightblue", size = 3) +
 #Anotate the nodes with the names
 geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
 #Add theme to the plot for better visualization
 theme_void()

}

Example network graph
#Testing the functions using kjv bible text

the King James version is book 10 on Project Gutenberg:
library(gutenbergr)
kjv <- gutenberg_download(10)

#kjv bigrams
kjvBigrams <- kjv %>%
 count_bigrams()

filter out rare combinations, as well as digits
kjvBigrams <- kjv %>%
 count_bigrams()

kjvBigrams %>%
 filter(n > 40,
 !str_detect(word1, "\\d"),
 !str_detect(word2, "\\d")) %>%
 visualize_bigrams()

Commentary:

The graph shows a network of most common bigrams in kjv Bible text. Each arrow
connects an origin node to a destination node for the bigrams present in the text. A darker
arrow means that the bigrams connected are most common. In out example, thou shalt and
Thou hast are some of the most common bigrams in the text. We can also observe that Thou
and Thy are the most common central nodes in the text.

