
  

Version Number: 

1.00 (July 28, 2020) 

Worth 

4.5% 
of your total 

mark 

 

 

 Assignment 4 
Land Registry, Part 4 

  

 To be submitted online not later than Friday, August 7, 2020, 11:59 p.m.   

(However, submissions will be accepted up to Sunday, August 9th, without penalty.) 
 

 

Description: 

In this lab you’ll add a graphical front end (GUI) to the existing Land Registry code. Along 

the way, you’ll demonstrate your understanding of the following course learning 

requirements (CLRs), as stated in the CST8284—Object Oriented Programming (Java) course 

outline: 

  

1. Produce code that has been tested and executes reliably (CLR VIII)  

2. Debug program problems using manual methods and computerized tools in an 

appropriate manner. (CLR X)  

3. Introduce Swing for building a Graphical User Interfaces (GUI) using Java 

Foundation Classes (CLR XII)  

 



 Assignment 4 

 Page 1 

Assignment 4 
Land Registry, Part 4 

Program Description 
 

In this assignment you’ll build a graphical front 

end to your existing Land Registry; at the 

completion of this assignment your program 

should be fully graphical. That is, there should be 

no console-driven input or output: everything is 

entered or displayed via the GUI interface to the 

user. 
 

 

This is not to suggest that your finished 

application will have a production-quality look to 

it, with all of the buttons nicely aligned and each 

frame resizable to fit any screen size. Given the 

time constraints, you don’t want to waste the few 

hours remaining in the semester getting these 

‘look-and-feel’ issues just right. However, your 

code should be operationally robust, able to 

catch bad input and correct the user with suitable 

dialog, and enabling and disabling parts of the user 

interface when appropriate. 
 

 

I. Download the Assignment4 project and 

copy your existing classes to it. 
 

a) Download the CST8284_20S_Assignment4.zip 

file and unzip the project in Eclipse, just as you 

have done with earlier labs. The project file has a 

cst8284.asgmt4.landRegistry package, and this 

includes a new class, RegViewGUI, which will 

control all graphical input and output.  This class 

will replace RegView, which should be deleted 

from your code prior to submission.  But to 

begin, copy all your existing classes to the new 

package, including RegView. 

 

b) There is no UML diagram for this assignment.  So 

you are free to add new methods to your existing 

code, provided they follow the general guidelines 

established in Assignments 1, 2, and 3.  And as 

well, your code must follow the best practices 

guidelines outlined earlier in the semester. There 

is no sample output provided—the output is 

graphical, after all.  But you are required to use 

and display the dialogs indicated below as part of 

the execution of your code; you cannot include 

them with your submission and then ignore them 

during actual program execution. 

 

Additionally, there is no starter code for this 

assignment, since you should reasonably be able 

to take your code from Assignment 2 and adapt it 

to this assignment, even without fully functioning 

exceptions in Assignment 3. 

 

Most importantly, you must heed the warning just 

given in the introduction: your code must behave 

the way a normal windows application behaves, 

and it must be robust enough to handle bad input 

in the textboxes, or prevent input altogether 

when it is inappropriate. 

 
 

II. Add the following new features to your    

 Land Registry 
 

The main purpose of this assignment is to wrap a 

graphical interface around your existing RegView 

code. Since each student builds their code slightly 

differently, it isn’t possible at this stage to give 

specific instructions that will work for everyone.  

But in general terms, you’ll need to do the 

following to implement your existing Land 

Registry code in GUI form.  How you actually do 

this, and the specific decisions you make, will 

depend on your implementation of the code up 

to this point.  

 

In the following steps, you’ll gradually remove 

code from the existing RegView class and 

transplant it to RegViewGUI.  At the end of this 

process, you should be able to copy any 

Marks will be deducted for any text output 

that appears in the Eclipse console during 

program execution, including as the result of 

thrown exceptions. Furthermore, all input 

must be entered via a graphical control only 

(e.g. button, check box, text field entry, etc.). 



 Assignment 4 

 Page 2 

remaining code in RegView over to 

RegViewGUI, and then delete RegView entirely.   
 

 

a) First, in RegLauncher, replace the existing 

main() method with the following 
 

public static void main(String[] args) { 
   javax.swing.SwingUtilities.invokeLater  
   (new Runnable() {  
      public void run() {  
         new RegView().launch();  
      }    
   });  
} 

 

where the run()method contains the code that 

normally launches your program.  The above 

code loads your program into a separate thread, 

permitting other programs to run in parallel with 

your GUI app. (The subject of threading will be 

taken up next semester in CST8288.)  

The starting point for GUI execution in this 

application is RegViewGUI.launchDialog().  

If you want to gradually transfer your code over 

from RegView to RegViewGUI (a fairly safe 

procedure which lets you test each code 

modification you make as you go) you can call 

RegViewGUI.launchDialog() from within 

RegView.launch().  Alternately, you can call 

RegViewGUI.launchDialog() directly from 

main(), inside the run() method, and operate 

on the GUI code directly; the choice is up to you.  

The guidelines in this document mostly follow the 

first of the two options. 

 

b) In RegView, you can delete 

executeMenuItem() and displayMenu()—

along with the fixed constants used to display the 

menu— since the buttons in the RegViewGUI 

dialog now replace the menu choices; clicking on 

a button has the same effect as selecting a menu 

item.  At the same time, you can get rid of the  

Scanner import statement, and the new Scanner 

declaration in your code; you won’t be needing 

these any more. 

 

c) Whenever a BadLandRegistryException is 

thrown, it should cause a JOptionPane dialog 

to be displayed, like the one shown below.  Note 

that the exception’s getHeader() method is 

used to display the header string in the menu, 

while getMessage() provides the message 

displayed in the body of the dialog. 
 

For information on using JOptionPane to 

create dialog windows, the web site  
 

https://docs.oracle.com/javase/tutori

al/uiswing/components/dialog.html  
 

is a good place to start. 

 

d) You’ll also need to use a JOptionPane, like the 

one shown below, to add a new Registrant.  (See 

the same URL listed above.)   

 

 

 

 

 

 

 
 

This dialog should be invoked whenever the  

‘Add New Registrant’ button is clicked on in the 

RegViewGUI.  But now, your code will need to 

call addNewRegistrant(), causing a new 

Registrant object to be added to the 

registrants ArrayList.  As before, this triggers 

the generation of a new, unique regNum—the 

code in RegControl should not need to change 

if you’ve followed the instructions in Assignments 

1, 2, and 3 correctly.  But now, when once you’ve 

added the new Registrant to the ArrayList, 

Note: 
RegViewGUI is provided as a framework for you to use 

and develop in this assignment.  Feel free to modify it in 

any way you feel appropriate to achieve the requirements 

of this assignment. 

Reminder: 
You must include code to sort the properties ArrayList in this 

assignment.  See the instructions at the end of this document. 



 Assignment 4 

 Page 3 

RegViewGUI’s regNum combo box will need to 

be updated as well; more on this shortly. 

 

e) A third JOptionPane (not shown) will need to be 

added to allow the user to change the existing 

registration number associated with a property 

to a new regNum. 

 

 

 

 

 

 

 
 

This dialog will be needed when the user selects 

the ‘Change Registration Number’ button, which 

will call your existing 

changePropertyRegistrant() method to 

change the regNum of each of the properties 

displayed in the propertiesPanel.  Again, 

more on this shortly. 

 

Other dialogs may be needed to confirm that 

some event has taken place or is about to take 

place.  But see the note at the end of this 

document about using such dialogs sparingly. 

 

Collectively, your dialogs must be used in such a 

way that your application operates like any 

standard Windows app, with everything 

functioning reliably and predictably, where mouse 

clicks give logical, intuitive results, and there are 

NO SURPRISES…we haven’t spent the semester 

building this application just to have it messed up 

by sloppy code in the final step. 

 

f) makeNewRegistrantFromUserInput(), 
getResponseToString(), and 

requestRegNum() may be deleted, along with 

any references to these methods in your code, 

since their function is effectively supplanted by 

JOptionPane dialogs and the textfields and 

buttons of RegViewGUI. 

 

(Dialogs simplify the IO process, so once you’ve 

excised the console-driven IO elements from 

RegView, you’ll find the code in that class is 

much leaner.  And of the Strings currently output 

by RegView will be made obsolete our graphical 

interface.)  

 

As a final comment before you begin making 

more direct changes to RegViewGUI, it should 

be noted that there are no general rules for 

structuring code in graphical applications. This is 

unfortunate, since GUI code tends to be messy 

by its very nature. For this reason, it is even 

more essential than ever to structure your code 

for readability and ease of maintenance. Take the 

following three pieces of advice as general 

guidelines when constructing graphical programs: 

 

1) Every major dialog window should have its own 

class. The exception is when pre-built dialogs 

exist, like the FileChooser in Lab 9 and the 

JOptionPane dialogs mentioned above. 

 

2) Rather than attempt to load all the graphical 

components of each dialog in a single overlong 

block of code, break the code into modules such 

that each layout component gets loaded by a 

method dedicated to that task. See the code 

provided in Lab 9 as an example of this, e.g. the 

use of the getWestPanel() and getCenterPanel() 

in populating the BorderLayout in the WordSorter 

application.  

 

3) Whenever multiple controls of the same type are 

loaded more than once into a panel or dialog—

examples include a radio button, a check box, or 

a menu item, which almost never appear by 

themselves, but in a group—write a method to 

handle the common features of each component, 

and reuse this method for each new instance of 

that component, with each setable feature 

passed as a parameter to the method. For 

example, see the code for setting the four 

buttons in getWestPanel() in Lab 9’s 

WordSorter.java, or the static makeBtn() method 

of module 10.2 in the slides.  

 

Since you only need to prove that your GUI front 

end works correctly and reliably to obtain marks 

for this assignment, you don’t explicitly need to 

follow these guidelines. However, your coding 

will go faster, your program will function more 



 Assignment 4 

 Page 4 

 

reliably,  and you’ll spend less time debugging the 

code, if you modularize your program according 

to these simple rules. 

 

g) You should be able to run RegViewGUI as it is, 

even with nothing added yet.  Whenever the 

application loads, two buttons will always be 

enabled: ‘Add New Registrant’, and ‘Exit’—

because no other actions are possible initially.  

(The ActionListener code for the Exit button 

is already provided, so you should be able to click 

this button to exit the app at any time.)  

 

Start modifying the RegViewGUI code by adding 

the ActionListener that causes (1) the ‘New 

registrant input’ dialog box to appear (2) returns 

the Registrants full name, and uses it to 

instantiate a new Registrant, (3) calls 

addNewRegistrant() to load the new 

Registrant into the registrants ArrayList.  But 

you’re not done yet; see Section (h) below.   

 

(As mentioned above, you can do all this using a 

modified viewAddNewRegistrant() method 

and calling it from RegViewGUI, or by making an 

instance of RegControl in RegViewGUI and 

using it to call addNewRegistrant().) 

 

Additionally, if the two Land Registry files exist 

on startup, you can enable the ‘Load Land 

Registry’ button and add an ActionListener to it  

 

so the two ArrayLists are loaded from their 

respective files whenever the ‘Load Land 

Registry’ button is clicked.   

 

h) Whenever the registrants ArrayList is loaded or 

changed, as in (g) above this should cause the 

registrants combo box in the top left corner of 

the dialog to be reloaded with the list of current 

regNums.  To see how this would work, replace 

the line 
 

mainPanel.add(loadRegistrantsPanel(null), 
registrantConstraints); 

 

near the top of RegViewGUI, with 

 
mainPanel.add(loadRegistrantsPanel(getRegTest
ArrayList()),registrantConstraints);   

 
Note that getRegTestArrayList() returns 

an ArrayList of Registrants that you can use 

to test your code with—at least, in the early 

stages of development.  Once you’ve satsified 

yourself that the sample ArrayList will be loaded 

in the scroll pane, rewrite the existing code so 

that any change to registrants ArrayList causes 

the combo box to be reloaded with the new 

ArrayList.   

 

Another method, 

getPropertyTestArrayList(), is provided 

 



 Assignment 4 

 Page 5 

 

to test the properties JScrollPane.  This can 

be demonstrated by replacing the existing code 

with 
 
mainPanel.add(loadPropertyPanel(getPropertyTe
stArrayList()), propertyConstraints); 
 

near the top of the program.   

 

Note that the default setting for the combo box 

is to display all the registrants available in the 
scrollpane, along with all the properties— 

information obtained from 

listOfRegistrants() and 

listOfProperties(0) respectively.  This is 

the situation that currently exists in the 

RegViewGUI code when you plug in the two test 

ArrayLists.  (See the sample output below.)   

 

But once a particular regNum is selected from 

the combo box, the situation changes—and you’ll 

need to provide the code for it at this point.  

Now, the registrants scroll pane should be 

populated with the information from the 

Registrant whose regNum is selected, obtained 

via findRegistrant().  This is passed to 

loadRegistrantsPanel() as an ArrayList 

consisting of only that one item.  At the same 

time, the loadPropertyPanel() method 

should be passed a list of all properties associated 

with that regNum, using 

listOfProperties(reg.getNum())—or  

 

nothing, if that registrant has no properties 

associated with it. 

 

In short, selecting a specific regNum should 

trigger the loading of the Registrant 

information and all its associated properties.  

You’ll need to modify the existing RegViewGUI 

code to make sure the program behaves 

accordingly.   

 

Furthermore, any time a specific Registrant 

appears, the ‘Delete Registrant’ button should be 

enabled, so that the current Registrant can be 

deleted using deleteRegistrant().  And 

don’t forget, all properties associated with that 

Registrant must be deleted from the 

properties ArrayList as well.  Furthermore: once 

a registrant is deleted, that event should update 

the registrants ArrayList, which should 

automatically trigger reloading of the regNum list 

in the combo box…which in turn causes the 

default Registrant and Properties lists to be 

reloaded—as outlined above. 

 

Also: whenever a Registrant is visible in the 

scroll panel, even if it currently has no property 

registered, you should be able to add a new 

property using that Registrant.   So your code 

must also enable the ‘Add New Property’ button 

whenever a Registrant’s number and information 

appear in the combo box and scroll menu.  (See 



 Assignment 4 

 Page 6 

section (j) below for the details on adding an 

‘Add Property Dialog’ to this application.) 

 

Furthermore, any time a Property appears in the 

list of Properties, the ‘Delete Property’ and 

‘Change Registration Number’ buttons should be 

enabled, to allow the user to execute that 

functionality as well. 

 

And did I mention…anytime there’s a registrant 

in the ArrayList, the ‘Backup Land Registry’ 

button should be enabled, to allow the two 

ArrayLists to be backed up to file. 

 

And of course, the buttons that are enabled by 

one action—such as a Registrant being loaded—

must also be disabled when that situation has 

ceased or reversed. 

 

So you need to figure out what happens when 

objects and ArrayLists of objects are loaded and 

unloaded, and what resources will be available (in 

the form of what buttons will be enabled, and 

which disabled) starting from what happens when 

the ArrayList gets loaded or changed and working 

through step-by-step what resources need to be 

available, and when.  This needs to be mapped out 

in advance of coding.  But it also needs to be done 

in such a way so as to minimize the code, and 

hence the complications.  Simply adding long lists 

of code to account for every possibility in each 

button’s ActionListener is a recipe for disaster; 

the behaviour of your GUI interface needs to be 

thought out in advance. 

 

To help simplify the business of enabling and 

disabling buttons, two utility methods are 

provided with the RegViewGUI code: 

 

 setButtonIn() takes three parameters: the 

JPanel containing the buttons (either the 

eastBtnPanel or the southBtnPanel), the 

component number, and whether it is to be 

enabled or not.  The component number for the 

two panels, along with fixed constants for ON 

and OFF, are declared at the top of RegViewGUI.   

 

For example, to disable the ‘Delete Registrant’ 

button, you’d write 

setButtonIn (eastBtnPanel,  
   DELETE_REGISTRANT, OFF) 
 

 Since it is laborious to turn groups of buttons 

ON or OFF one at a time, a second utility 

method, turnAllBtnsIn() has been provided to 

toggle all the buttons to the same state, except 

for a list of buttons you can exclude, which 

remain unchanged.  For example, to turn all the 

buttons in the eastBtnPanel ON except for ‘Add 

New Registrant’ and ‘Delete Registrant’, you’d 

write: 

 

turnAllBtnsIn (eastBtnPanel, ON,  
   ADD_NEW_REGISTRANT,  
   DELETE_REGISTRANT) 
 

This should simplify your coding considerably.  

But remember: you still need to figure out which 

buttons will be enabled and disabled depending 

on which Registrant or Property resources are 

displayed in the GUI at any point in time. 

 

i) Add two additional buttons to the eastBtnPane 

that allow the Properties to be sorted by size (i.e. 

area) and taxes, from largest to smallest.  Of 

course, these buttons will only need to be 

enabled when there is more than one Property 

listed in the propertiesPanel.  (Note that 

you’ll need to change the GridLayout in 

loadEastBtnPanel() from 5 to 7.)  The 

properties scroll pane should be reloaded 

whenever one of these selections is made. 

 

j) You’ll need to construct a special dialog to enter 

the new Property values, i.e. the length, width, 

left and top values, using the regNum of the 

registrant whose regNum/information currently 

appears in the combo box/scroll pane.  This does 

not need to be elaborate…and please don’t 

waste time lining up all the labels and text boxes 

exactly.  But remember to cite any sources. 

 

k) There are several ways to close a JFrame when 

you wish to exit. The recommended method is 

by calling either this.dispose() or 

JFrame.setDefaultCloseOperation(Wind
owConstants.DISPOSE_ON_CLOSE); I use the 

former method in the code provided.  Whichever 



 Assignment 4 

 Page 7 

method you use, make sure your two Land 

Registry files are saved reliably before the 

application shuts down.  As previously noted, 

using System.exit(0) is to be studiously 

avoided. In this application, using this command 

almost guarantees that your two Land Registry 

files will be lost or scrambled as a result. 

 

l) And remember: when you’ve got your code 

working correctly, you’ll need to remove the 

RegView class from your code: everything 

should be graphical at this point, so everything 

goes through RegViewGUI or Property entry 

Dialog, described in (j) above. 

 

III. Notes, Suggestions, Tips, and Warnings 
 

a) Students are reminded that:  

 You should not need to use code/concepts that 

lie outside of the ideas presented in this course;  

 You must cite all sources used in the production 

of you code according to the information 

provided in Module00. Failure to do so will result 

in a charge of plagiarism. The one exception to 

this rule is the information in the course notes 

themselves;  

 Students must be able to explain the execution of 

their code. If you can’t explain its execution, then 

it is reasonable to question whether you actually 

wrote the code or not. Partial marks, including a 

mark of zero and a charge of plagiarism, may be 

awarded if a student is unable to explain the 

execution of code that he/she presumably 

authored.  

 You do NOT need to document your new code 

in RegViewGUI 

 

IV. Submission Guidelines  
 

Your code should be uploaded to Brightspace (via the 

link posted) in a single zip file created by: 

 

1) In Eclipse, right click on the project name 

(CST8284_20S_Assignment4); 

2) select ‘Export’ then select General >> 

Archive File, then click Next; 

3) in the Archive File menu make sure all of the 

project subfolders are selected (including 

.settings,  src,  bin) and the ‘Save in 

zip format’ and ‘Create directory structure 

for files’ radio buttons are selected; 

4) In the ‘To Archive File’ window, save your zip 

file to a location you’ll remember. But make 

certain to name your zip file according to the 

following format, as outlined in Module 00:  
 

      Assignment4_Yourlastname_Yourfirstname.zip 
 

including the underscores and capitals, but 

with your last and first name inserted as 

indicated. Failure to label your zip file 

correctly will result in lost marks.  

 

Thing NOT to do: 
 

 Aside from RegView, you cannot delete any of the 

classes from the earlier assignments.  And while 

you can augment existing classes with methods, 

you must use all the existing classes for their 

originally-stated fashion. 

 Do not prompt the user with a JOptionPane 

asking to confirm every decision.  The last thing 

anyone wants after clicking a button that says 

‘Add New Registrant’ is to be confronted with a 

dialog box that says ‘Do you REALLY want to add 

a new registrant?’ or even ‘New Registrant 

entered…Click OK’.  If the result of a decision is 

obvious, there’s little need to confirm it with an 

OK/Cancel button each time. The only time this is 

truly necessary is when a decision will have 

irrevocable consequences, as for example when 

you reload the Land Registry from files, or delete 

a Registrant.  Only then is it essential to prompt 

the user with a confirmatory dialog. 

 As always, do not throw exceptions at the point 

where the data is entered by the user.  You 

should mostly be throwing your exceptions in the 

setters, or when new information is to be loaded 

ArrayList (just before the (bad) data is stored), 

and catching them when the button to enter the 

data is clicked. 

 If you add new components to a JPanel, rather 

than use the existing methods provided, be sure 

to clear the existing components first.  Adding 

new components is like adding new objects to an 

ArrayList: they accumulate.  In GUIs, this can lead 

to bizarre behaviour, as one component crowds 

out another, causing panels to stretch, and 

graphical objects to disappear altogether.  
 

 

Corrections, Clarifications, and Addenda: 
 

As required; check version updates for clarifications and 

corrections.  



 Assignment 4 

 Page 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assignment 4 Marking Guide 
Requirement Mark 

File labelled and zipped correctly, as per instructions.  The doc folder is supplied in your zip file 

and displays all the classes used in your project, hypertext-linked as required 1 

Program loads correctly and will begin execution, without triggering exceptions.  Note that failure 

to execute at this stage will seriously impact the rest of the marks in this assignment 2 

The program works as described, functioning much as it did in earlier assignments, but with all 

console input and output replaced by a GUI interface instead.  That is, all buttons function as 

expected, calling up appropriate dialogs, loading text, and exiting from those dialogs when this 

option is specified; and all TextFields return strings as they did in earlier assignments 

 

7 

Buttons are enabled and disabled appropriately during execution, so that it is not possible to 

select a feature which should not be available during normal operation 

 
7 

Properties buttons sort according to area and taxes 

3 

Add New Property dialog functions as expected 

6 

MINUS: late penalty; failure to cite sources; private information not kept secure through data 

hiding; diagnostic strings output to the console when only graphical output is allowed; abnormal 

termination, exceptions thrown under certain circumstances; unusual, abnormal and erratic 

features displayed during execution; your documentation should not include comments which are 

not part of the program itself (e.g. TODOs and commented-out code: these are for your 

purposes only: if it’s not part of the program, I don’t need to see it). 

 

 

 

TOTAL :       
 

26 


