question archive Assume that you just won the government vaccination lottery

Assume that you just won the government vaccination lottery

Subject:AccountingPrice:9.82 Bought3

Assume that you just won the government vaccination lottery. Your prize can be taken either in the form of $100,000 at the end of each of the next 20 years (i.e., $2 million over 20 years) or as a lump sum of $1,000,000 paid immediately.  

(a) If you expect to invest $100,000 annually that earns 6% annually on your investments over the next 20 years, calculate the current value of future payments from an annuity. Explain how you would use time value of money analysis to choose between the annuity and the lump sum. 

(b) If you expect to invest $100,000 annually that earns 8% annually on your investments over the next 20 years, calculate the current value of future payments from an annuity. Explain how you would use time value of money analysis to choose between the annuity and the lump sum. 

c) Using interpolation based on your answers in part (a) and (b), at approximately what interest rate would you be indifferent when choosing between the two plans? 

(d) You can earn 3 percent, compounded monthly at your bank. If you deposit $1,000,000 at age 28, how old will you be when your account has grown to $2,000,000? What is the effective annual rate? 

 

Question 2 Becky Kwok is currently considering investing specified amounts in the following two investment opportunities described below. 

• Investment A: Invest a lump sum of $52,000 today in an account that pays 8% annual interest, compounded monthly and leave the funds on deposit for exactly 10 years.

 • Investment B: Invest $1,200 at the beginning of each month for the next 5 years in an account that pays 10% annual interest, compounded monthly. 

(a) For investment A, draw the necessary timeline and determine the account balance at the end of year 10. 

 (b) For investment B, draw the necessary timeline and determine the account balance at the end of year 5. 

 

 Question 3 Four years ago, SONO Ltd. raised $30 million by issuing 15-year $1,000 par value bonds that carry 6.8% coupon rate, payable semiannually. SONO Ltd. is currently announcing to raise another $20 million by issuing 15-year zero coupon bonds that discount semi-annually. The current YTM on these bonds is 9%. 

(a) Calculate the number of the 15-year coupon bonds that SONO Ltd. issued to raise the $30 million four years ago. What will be the company's repayment be at the maturity date of the 15-year coupon bonds? 

 (b) Calculate the current bond prices of the 15-year coupon bonds and 15-year zero coupon bonds. 

 (c) Calculate the number of the 15-year zero coupon bonds that SONO Ltd. currently issues to raise the $20 million. What will be the company's repayment be at the maturity date of the 15-year zero coupon bonds? 

 (d) Are 15-year 6.8% coupon bonds or 15-year zero coupon bonds more sensitive to changes in market interest rates? (2 marks)

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

given below.

Step-by-step explanation

Q1)

Present value of annuity = P*[1 - (1+r)^-n / r ]

P = Periodical payment

r = Interest rate

n = Number of periods

a)

Present value = 100000*[1 - (1+6%)^-20 / 6% ]

= 1,146,992.12

we compare the present value with Lumpsum Amount ans select the Option That gives higher Present value

Since Present value of Annual payments are higher , Select Annuity payments

b)

Present value = 100000*[1 - (1+8%)^-20 / 8% ]

= 981,814.74

using the same Concept above , here Present value of lumpsum Is higher So select Lumpsum Amount Of 1,000,000

c)

Decrease In NPV when Interest rate decreases 2% = (1146992.12 - 981814.74) = 165,177.38

Indifference Interest rate = 6% + (2% / 165177.38)*(1146992.12 - 1000000) = 7.75%

So at 7.75% Interest rate you will be Indifferent

d)

Future value = Present value*(1+r)^n

r = Periodical Interest rate = 3% / 12 = 0.25%

n = Number of periods = ?

2000000 = 1000000*(1+0.25%)^n

1.0025^n = 2

Apply Log On both sides

n Log(1.0025) = Log(2)

n = log(2) / Log(1.0025)

n = 0.3010 / 0.00108

n = 277.61 Months

n = 277.61 / 12 = 23.13 Years

EAR = (1+(APR/m))^m - 1

m = Number of Compounding periods

EAR = (1+(3%/12))^12 - 1

Effective annual rate = 3.0416%

 

Q2)

(a) Account balance at the end of year 10 is $115,421

Timeline for the Investment A is as follows

Month

Opening Value

Interest @8%

Closing Value

1

52000

347

52347

2

52347

349

52696

3

52696

351

53047

4

53047

354

53401

5

53401

356

53757

6

53757

358

54115

7

54115

361

54476

8

54476

363

54839

9

54839

366

55205

10

55205

368

55573

11

55573

370

55943

12

55943

373

56316

13

56316

375

56691

14

56691

378

57069

15

57069

380

57450

16

57450

383

57833

17

57833

386

58218

18

58218

388

58606

19

58606

391

58997

20

58997

393

59391

21

59391

396

59786

22

59786

399

60185

23

60185

401

60586

24

60586

404

60990

25

60990

407

61397

26

61397

409

61806

27

61806

412

62218

28

62218

415

62633

29

62633

418

63050

30

63050

420

63471

31

63471

423

63894

32

63894

426

64320

33

64320

429

64749

34

64749

432

65180

35

65180

435

65615

36

65615

437

66052

37

66052

440

66493

38

66493

443

66936

39

66936

446

67382

40

67382

449

67831

41

67831

452

68284

42

68284

455

68739

43

68739

458

69197

44

69197

461

69658

45

69658

464

70123

46

70123

467

70590

47

70590

471

71061

48

71061

474

71535

49

71535

477

72012

50

72012

480

72492

51

72492

483

72975

52

72975

486

73461

53

73461

490

73951

54

73951

493

74444

55

74444

496

74940

56

74940

500

75440

57

75440

503

75943

58

75943

506

76449

59

76449

510

76959

60

76959

513

77472

61

77472

516

77988

62

77988

520

78508

63

78508

523

79032

64

79032

527

79559

65

79559

530

80089

66

80089

534

80623

67

80623

537

81160

68

81160

541

81702

69

81702

545

82246

70

82246

548

82795

71

82795

552

83346

72

83346

556

83902

73

83902

559

84461

74

84461

563

85025

75

85025

567

85591

76

85591

571

86162

77

86162

574

86736

78

86736

578

87315

79

87315

582

87897

80

87897

586

88483

81

88483

590

89073

82

89073

594

89666

83

89666

598

90264

84

90264

602

90866

85

90866

606

91472

86

91472

610

92082

87

92082

614

92695

88

92695

618

93313

89

93313

622

93935

90

93935

626

94562

91

94562

630

95192

92

95192

635

95827

93

95827

639

96466

94

96466

643

97109

95

97109

647

97756

96

97756

652

98408

97

98408

656

99064

98

99064

660

99724

99

99724

665

100389

100

100389

669

101058

101

101058

674

101732

102

101732

678

102410

103

102410

683

103093

104

103093

687

103780

105

103780

692

104472

106

104472

696

105169

107

105169

701

105870

108

105870

706

106576

109

106576

711

107286

110

107286

715

108001

111

108001

720

108721

112

108721

725

109446

113

109446

730

110176

114

110176

735

110910

115

110910

739

111650

116

111650

744

112394

117

112394

749

113143

118

113143

754

113898

119

113898

759

114657

120

114657

764

115421

(b) Account balance at the end of year 5 is $93,699

Timeline for the Investment B is as follows

Month

Opening Value

Investment

Interest @10%

Closing Value

1

0

1200

10

1210

2

1210

1200

20

2430

3

2430

1200

30

3660

4

3660

1200

41

4901

5

4901

1200

51

6152

6

6152

1200

61

7413

7

7413

1200

72

8685

8

8685

1200

82

9967

9

9967

1200

93

11260

10

11260

1200

104

12564

11

12564

1200

115

13879

12

13879

1200

126

15204

13

15204

1200

137

16541

14

16541

1200

148

17889

15

17889

1200

159

19248

16

19248

1200

170

20618

17

20618

1200

182

22000

18

22000

1200

193

23394

19

23394

1200

205

24798

20

24798

1200

217

26215

21

26215

1200

228

27644

22

27644

1200

240

29084

23

29084

1200

252

30536

24

30536

1200

264

32001

25

32001

1200

277

33477

26

33477

1200

289

34966

27

34966

1200

301

36468

28

36468

1200

314

37982

29

37982

1200

327

39508

30

39508

1200

339

41047

31

41047

1200

352

42600

32

42600

1200

365

44165

33

44165

1200

378

45743

34

45743

1200

391

47334

35

47334

1200

404

48938

36

48938

1200

418

50556

37

50556

1200

431

52187

38

52187

1200

445

53832

39

53832

1200

459

55491

40

55491

1200

472

57163

41

57163

1200

486

58850

42

58850

1200

500

60550

43

60550

1200

515

62265

44

62265

1200

529

63993

45

63993

1200

543

65737

46

65737

1200

558

67495

47

67495

1200

572

69267

48

69267

1200

587

71054

49

71054

1200

602

72856

50

72856

1200

617

74673

51

74673

1200

632

76506

52

76506

1200

648

78353

53

78353

1200

663

80216

54

80216

1200

678

82095

55

82095

1200

694

83989

56

83989

1200

710

85899

57

85899

1200

726

87825

58

87825

1200

742

89766

59

89766

1200

758

91724

60

91724

1200

774

93699

Q3)


Part (a):

Number of 15 year coupon bonds issued 4 years ago= Total value/ Par value per bond

=30000000/1000= 30,000

Repayment at the maturity date:

Redemption of par value $30 million and one semi annual interest of 30 million*6.8%/2= 1.02 million

Total $31.02 million

Part (b):

Current price of 15 year coupon issued 4 years ago= $848.37

Calculation using TI BA II Plus calculator:

Set END

P/Y= 2, C/Y= 2

N= 11*2=22

I/Y= 9

PMT= 1000*6.8%/2= 34

FV= 1000

CPT PV= -848.3713276

Current price of 15 year zero coupon bond= $267 as follows:

N= 15*2= 30

I/Y= 9

PMT= 0

FV= 1000

CPT PV= -267

Part (c):

Number of zero coupon bonds to be issued to raise $20 million= Amount required/Price per bond

=20000000/267= 74,907 (rounded)

Repayment of zero coupon bonds at the maturity date= Number of bonds* face value per bond

=74907*1000 = $74,907,000

Part (d): Sensitivity of bond prices to interest rate changes is dependant on Duration. The more the Macaulay Duration, the more sensitive and vice versa.

Duration of zero coupon bond is its term to maturity which is 15 years.

Since the remaining term to maturity of coupon bond is 11 years, Duration is not more than 11 years.

Hence the zero coupon bond with higher duration is more sensitive