question archive Brand Alcohol Content (%) Calories in 12 oz Big Sky Scape Goat Pale Ale 4

Brand Alcohol Content (%) Calories in 12 oz Big Sky Scape Goat Pale Ale 4

Subject:StatisticsPrice:9.82 Bought3

Brand Alcohol Content (%) Calories in 12 oz Big Sky Scape Goat Pale Ale 4.7 163 Sierra Nevada Harvest Ale 6.7 215 Steel Reserve 8.1 222 Coors Light 4.15 104 Genesee Cream Ale 5.1 162 Sierra Nevada Summerfest Beer 5 158 Michelob Beer 5 155 Flying Dog Doggie style 4.7 158 Big Sky IPA 6.2 195 Simple linear regression results: Dependent Variable: Calories in 12 oz Independent Variable: Alcohol Content (%) Calories in 12 oz = 25.031236 + 26.318608 Alcohol Content (%) Sample size: 9 R (correlation coefficient) = 0.91344136 R-sq = 0.83437513 Estimate of error standard deviation: 15.637981 [ Select ] % of the variation in calories is determined by the alcohol content of the beer. If the alcohol content increases by 1%, the number of calories increases by [ Select ] If there were no alcohol in the beer, the calories would be [ Select ] This correlation is [ Select ] and [ Select ]

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

1) 83.437513%of variation in calories determined by alcohol content

 

2)   if alcohol content is increased by 1%, the number of calories will increase by 26.318608 in 12 oz

 

3) if there is no alcohol content, then number of calories will be =25.031236

 

4) The options are not available and hence, it is not clear. But, the interpretation is the following

 

This correlation is strong  and positive

 

Step-by-step explanation

The percentage of variation in calories determined by alcohol content  is the value of R-squared. 

 

From the given information, R-squared =0.83437513

 

So,  0.83437513=83.437513%

 

Therefore, 

 

1) 83.437513%of variation in calories determined by alcohol content

 

2) The regression line is given to be 

 

Calories in 12 oz =25.031236+26.318608 Alcohol content ( in % )

 

 

Now, if alcohol content is increased by 1%, we would get 

 

 

 

 [ because alcohol content is in %, so, for 1 % increase, we need to add +1 to the "Alcohol content " variable ] 

 

?New Calories in 12 oz =25.031236+26.318608 ( Alcohol content + 1 )

 

 

?New Calories in 12 oz =25.031236+26.318608 ( Alcohol content )+26.318608

 

?New Calories in 12 oz =Previous calories in 12 oz+26.318608

 

So, For 1% increase in alcohol content, there is a increase of 26.318608 calories in 12 oz

 

Hence,  if alcohol content is increased by 1%, the number of calories will increase by 26.318608 in 12 oz

 

3) if there is no alcohol content, then number of calories will be  

 

Calories in 12 oz =25.031236+26.318608 (0%)

 

?Calories in 12 oz =25.031236+26.318608 (0)

 

?Calories in 12 oz =25.031236

 

Hence,  if there is no alcohol content, then number of calories will be =25.031236

 

4) The correlation coefficient value is 0.91344136 which is close to +1. 

 

So, this correlation is positive and they are strongly  related. 

 

The options are not available and hence, it is not clear as to which is which. 

 

But, this interpretation from the correlation value is that 

 

This correlation is strong  and positive