question archive Chapter 4Describe and explain the term willful blindness, and how it relates to climate change 1)Why does standard cost benefit analysis fall apart when we try to put a sufficiently high price on carbon to avoid a catastrophe? Chapter 4 of more of our attention, society should devote more resources to each

Chapter 4Describe and explain the term willful blindness, and how it relates to climate change 1)Why does standard cost benefit analysis fall apart when we try to put a sufficiently high price on carbon to avoid a catastrophe? Chapter 4 of more of our attention, society should devote more resources to each

Subject:BusinessPrice: Bought3

Chapter 4Describe and explain the term willful blindness, and how it relates to climate change

1)Why does standard cost benefit analysis fall apart when we try to put a sufficiently high price on carbon to avoid a catastrophe?

Chapter 4 of more of our attention, society should devote more resources to each.

But we can't just hide behind standard benefit-cost analysis that ignores extremes. Each of these scenarios may also have their own variant of fat tails: underestimated and possibly unquantifiable extreme events that could dwarf all else. The analysis soon moves toward some version of a precautionary principle focused on extreme events. The further we move away from standard benefit-cost analysis, the more acute then the need to compare across worst-case scenarios. That comparison is getting increasingly difficult. We cannot dismiss out of hand any of the five remaining worst-case scenarios. Their probabilities aren't so close to zero as to be negligible. The potential downsides are large. Ask anyone working on nuclear nonproliferation, and they might well argue that nuclear terrorism is worse than climate change. Ask a virologist, and they'll tell you that society is inadequately prepared to combat pandemics. What then, if anything, still distinguishes climate change from the five remaining others? For one, it's the relatively high chance of eventual planetary catastrophe. Our own analysis from the last chapter puts the likelihood at around 10 percent, and that's for an indisputable global catastrophe. Climate change would trigger plenty of catastrophic events with temperatures eventually rising by much less than 6°C (11°F). Many scientists would name 2°C (3.6°F) as the threshold, and we are well on our way to passing and exceeding that, unless there is a major global course correction. Second, the gap between our current efforts and what's needed on climate change is enormous. We are no experts on any of the other worst-case scenarios, but there at least it seems like lots is already being done. Take nuclear terrorism. The United States alone spends many hundreds of billions of dollars each year on its military, intelligence, and security services. That doesn't stamp out the chance of terrorism. Some of the money spent may even be fueling it, and there are surely ways to approach the problem more strategically at times, but at least the overall mission is to protect the United States and its citizens. It would be hard to argue that U.S. climate policy today benefits from anything close to this type of effort. As for mitigating pandemics, more could surely be spent on research, monitoring, and rapid response, but here too it seems like needed additional efforts would plausibly amount to a small fraction of national income. Third, climate change has firm historical precedence. Humans have never experienced it, but the planet has. Some of the other potential global catastrophes often rely on a heavy dose of science fiction. Autonomous robots reproducing and taking over the world may be the most extreme example. Not that it can't ever happen, but it certainly hasn't happened before. Climate change has. There's ample reason to believe that pumping carbon dioxide into the atmosphere is reliving the past—the distant past, but the past nonetheless. The planet has seen today's carbon dioxide levels before: over three million years ago, with sea levels some 20 meters (66 feet) higher than today, and camels roaming the high Arctic. There are considerable uncertainties in all of this, but there's little reason to believe that humanity can cheat basic physics and chemistry. Many of the effects from climate change are unprecedented in human timescales, but that doesn't make them unprecedented in geological time scales: no need for science fiction to tell the story. Contrast the historical precedent of climate change with that of biotechnology, or rather the lack of it. The fear that bioengineered genes and genetically modified organisms (GMOs) will wreak havoc in the wild is a prime example. They may act like invasive species in some areas, but a global takeover seems unlikely, to say the least. Much like climate change, historical precedent can give us some guidance. But unlike climate change, that same historical precedent gives us quite a bit of comfort. Nature itself has tried for millions of years to create countless combinations of mutated DNA and genes. The process of natural selection all but guarantees that only a tiny fraction of the very fittest permutations has survived. Genetically modified crops grow bigger, stronger, and are otherwise pesticide-resistant. But they can't outgrow natural selection entirely. None of that yet guarantees that scientists wouldn't be able to develop permutations that could wreak havoc in the wild, but historical experience would tell us that the chance is indeed slim. Reassuringly, the best scientists working on biotechnology seem to be much less concerned about the dangers of "Frankenfoods" and GMOs than the general public. The reverse holds true for climate change. The best climate scientists appear to be significantly more concerned about ultimate climate impacts than the majority of the general public and many policy makers. Some of these same climate scientists—knowing what they know about the science, and knowing what they know about human responses to the climate problem— have seemingly moved on. And they haven't moved on to analyzing any of the other worst-case scenarios, believing that climate isn't all that bad. Quite the opposite: Some have moved on to looking for solutions to the climate crisis in an entirely different realm, searching for anything that could pull the planet back from the brink of a looming catastrophe. Their focus: geoengineering.

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE