question archive Consider the following linear programming problem: Maximize Z = 4X1 + 10X2 Subject to:         3X1 + 4X2 =< 480 4X1 + 2X2 =< 360 all variables => 0 The feasible corner points are (48,84),(0,120),(0,0),(90,0)

Consider the following linear programming problem: Maximize Z = 4X1 + 10X2 Subject to:         3X1 + 4X2 =< 480 4X1 + 2X2 =< 360 all variables => 0 The feasible corner points are (48,84),(0,120),(0,0),(90,0)

Subject:Electrical EngineeringPrice:2.87 Bought7

Consider the following linear programming problem:

Maximize Z = 4X1 + 10X2

Subject to:         3X1 + 4X2 =< 480

4X1 + 2X2 =< 360

all variables => 0

The feasible corner points are (48,84),(0,120),(0,0),(90,0). What is the maximum possible value for the objective function?

a. 1032    

b. 1200    

c. 360    

d. 1600  

e. none of the above.

 

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Answer: b .

Substitute the vertices to the objective function

?Z=4X1?+10X2??

(48,84)

Z = 4(48) + 10(84) = 192 + 840 = 1,032

(0,120)

Z = 4(0) + 10(120) = 1,200

(0, 0)

Z = 4(0) + 10(0) = 0

(90, 0)

Z = 4(90) + 10(0) = 360

Thus, the maximum possible value for the objective function is 1,200

The answer is B.