question archive A firm invested cash Rs

A firm invested cash Rs

Subject:BusinessPrice:2.87 Bought7

A firm invested cash Rs.198,000 on a project. It is forecasted that following cash flow will generate by this project in coming 7 years. Firm cost of capital is 10%.

 

Year                 Cash Inflow

  1.              Rs. 40,000
  2.                   55,000
  3.                   60,000
  4.                   45,000
  5.                   50,000
  6.                  18,000
  7.                  12,000

Use above information to calculate Simple Payback period?

Use above information to calculate Discounted payback period?

Use above information to calculateNPV?

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Answer:

  • 1) Simple Payback period = 3.96 Years
  • 2) Discounted payback period = 5.92 Years
  • 3) NPV = 6997.17

Step-by-step explanation

Part 1

Year Cash Flow Cumulative Cash Flow
[a] [b] [c = b+ Prev Year c]
0 -198000 -198000
1 40000 -158000
2 55000 -103000
3 60000 -43000
4 45000 2000
5 50000 52000
6 18000 70000
7 12000 82000

Simple Payback period = Period at which cumulative cash flow gets Positive i.e greater than 0

Simple Payback period = 3+43000/45000

Simple Payback period = 3.96 Years

 

Part 2

(1+r) = (1+10%)

(1+r) = 1.1

 

Year Cash Flow Discounted Cash Flow Cumulative DCF
[a] [b] [c = b/1.1^a] [d = c+ Prev Year d]
0 -198000 -198000.00 -198000.00
1 40000 36363.64 -161636.36
2 55000 45454.55 -116181.82
3 60000 45078.89 -71102.93
4 45000 30735.61 -40367.32
5 50000 31046.07 -9321.26
6 18000 10160.53 839.27
7 12000 6157.90 6997.17

 

Discounted payback period = Period at which cumulative Discounted cash flow gets Positive i.e greater than 0

Discounted payback period = 5+9321.26/10160.53

Discounted payback period = 5.92 Years

 

Part 3

(1+r) = (1+10%)

(1+r) = 1.1

 

NPV = CF0 + CF1/(1+r) + CF2/(1+r)2   + CF3/(1+r) + CF4/(1+r)4  + CF5/(1+r)5 + CF6/(1+r)6  + CF7/(1+r)7 

NPV = -198000 + 40000/1.1 + 55000/1.1^2 + 60000/1.1^3 + 45000/1.1^4 + 50000/1.1^5 + 18000/1.1^6 + 12000/1.1^7

NPV = 6997.17

Related Questions