question archive McNaughton Inc

McNaughton Inc

Subject:MathPrice:2.87 Bought7

McNaughton Inc. produces twin steak sauces, Spicy Diablo and mild Red Baron. These sauces are both made by blending two ingredients, A and B. A certain level of flexibility is permitted in the formulas for these products. The allowable percentages, along with revenue and cost data, are given in the following table. Up to 40 quarts of A and 30 quarts of B could be purchased. McNaughton can sell as much of these sauces as it produces.

Formulate a LP with the objective to maximize net profit from the sale of the sauces.

Sauce Ingredient Sales Price per Quart
  A B  
Spicy Diablo At least 25% At least 50% 3.35
Red Baron At most 75% none 2.85
Cost per Quart $1.60 $2.59  

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Answer:

This is related and can be expressed in therms of Linear Programming;  a mathematical optimization technique concerned typically with allocation of scarce (limited) resources. It is a procedure to optimize the value of some linear objective function when the factors involved are subject to some constraints expressed as linear inequalities and/or equalities.

LP problem in standard form = Objective Function + Constraints (Limitations)

Objective function = linear function of decision variables called also activities. It represents the results required (typically: maximize profit, minimize costs).

Constraints (Limitations) = quantified restrictions expressed
mathematically by linear inequalities. Typical constraints are: Maximizing problems: Minimizing problems:

Here in the above problem also :

Assume :

D = quarts of Diablo to be produced

R = quarts of Red Baron to be produced

AD= quarts of A used to make Diablo

AR = quarts of A used to make Red Baron

BD = quarts of B used to make Diablo

BR = quarts of B used to make Red Baron

CONDITIONS GIVEN :

MAX 3.35 D + 2.85 R - 1.6 AD - 1.6 AR - 2.05 BD - 2.05 BR
ST 2) - D + AD + BD = 0
3) - R + AR + BR = 0
4) AD + AR <= 40
5) BD + BR <= 30
6) - 0.25 D + AD >= 0
7) - 0.5 D + BD >= 0
8) - 0.75 R + AR <= 0

END OBJECTIVE FUNCTION VALUE 1) 99.0000000

VARIABLE VALUE REDUCED COST
D 50.000 0.000
R 20.000 0.000
AD 25.000 0.000
AR 15.000 0.000
BD 25.000 0.000
BR 5.000 0.000
OBJECTIVE COEFFICIENT RANGES
VARIABLE CURRENT COEFFICIENT ALLOWABLE INCREASE ALLOWABLE DECREASE
D 3.35000 0.75000 0.50000
R 2.85000 0.50000 0.37500
AD -1.60000 1.50000 0.66666
AR -1.60000 0.66666 0.50000
BD -2.05000 1.50000 1.00000
BR -2.05000 1.00000 1.50001
ROW   SLACK/SURPLUS DUAL PRICES
2 0.0000 -2.3500
3 0.0000 -4.3500
4 0.0000 0.7500
5 0.0000 2.3000
6 12.5000 0.0000
7 0.0000 -1.9999
8 0.0000 2.0000
RIGHT HAND SIDE RANGES
ROW CURRENT RHS ALLOWABLE INCREASE ALLOWABLE DECREASE
2 0.000 10.0000 10.0000
3 0.000 16.6666 3.3333
4 40.000 50.0000 10.0000
5 30.000 10.0000 16.6666
6 0.000 12.5000 INFINITY
7 0.000 6.2500 5.0000
8 0.000 2.5000 12.5000
DATA TABLE
ROW (BASIS) D R AD AR BD BR SLK4 SLK5 SLK6 SLK7 SLK8 RHS
1 ART 0.000 0.000 0.000 0.000 0.000 0.000 0.750 2.300 0.000 2.000 2.000 99.000
2 AD 0.000 0.000 1.000 0.000 0.000 0.000 -0.500 1.500 0.000 3.000 2.000 25.000
3 R 0.000 1.000 0.000 0.000 0.000 0.000 2.000 -2.000 0.000 -4.000 -4.000 20.000
4 AR 0.000 0.000 0.000 1.000 0.000 0.000 1.500 -1.500 0.000 -3.000 -2.000 15.000
5 BR 0.000 0.000 0.000 0.000 0.000 1.000 0.500 -0.500 0.000 -1.000 -2.000 5.000
6 SLK6 0.000 0.000 0.000 0.000 0.000 0.000 -0.250 0.750 1.000 2.000 1.000 12.500
7 D 1.000 0.000 0.000 0.000 0.000 0.000 -1.000 3.000 0.000 4.000 4.000 50.000
8 BD 0.000 0.000 0.000 0.000 1.000 0.000 -0.500 1.500 0.000 1.000 2.000 25.000

 

Related Questions