question archive Find the local linear approximation of f(x) = e3x at x = 1

Find the local linear approximation of f(x) = e3x at x = 1

Subject:MathPrice:2.86 Bought8

Find the local linear approximation of f(x) = e3x at x = 1.

y = e3

y = e3(x - 1)

y = 3e3(x - 1)

y = 3e3x - 2e3

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Linearization of f(x) is its approximation using tangent line

y= f(xo) +(x-xo) f'(xo)

here xo=1

y= f(1) +(x-1) f'(1)

here xo =1

f(x)=e3x

differentiate both sides w. r. t. x

f'(x) =d( e3x ) /dx =3e3x

now f(1)=e3

f'(1)=3e3

now putting values

y=e3?+(x-1)3e3

?y=e3?+x3e3?-3e3

y=3xe3?-2e3

So last option is correct.