question archive Find the local linear approximation of f(x) = e3x at x = 1
Subject:MathPrice:2.86 Bought8
Find the local linear approximation of f(x) = e3x at x = 1.
y = e3
y = e3(x - 1)
y = 3e3(x - 1)
y = 3e3x - 2e3
Linearization of f(x) is its approximation using tangent line
y= f(xo) +(x-xo) f'(xo)
here xo=1
y= f(1) +(x-1) f'(1)
here xo =1
f(x)=e3x
differentiate both sides w. r. t. x
f'(x) =d( e3x ) /dx =3e3x
now f(1)=e3
f'(1)=3e3
now putting values
y=e3?+(x-1)3e3
?y=e3?+x3e3?-3e3
y=3xe3?-2e3
So last option is correct.