question archive Let Z0 = I, Z1 = 1+i, and for n ≥ 2 define Zn = Zn−1Zn−2
Subject:MathPrice:2.86 Bought3
Let Z0 = I, Z1 = 1+i, and for n ≥ 2 define Zn = Zn−1Zn−2. Prove that, for every non-negative integer n, Re(zn) Im(zn) = 0 if and only if 3 | n.
Z0 = i
Z1 = 1 + i
for n ≥ 2 , Zn = Zn-1 Zn-2
we substitute n =2 to Zn = Zn-1 Zn-2;
Z2 = Z2-1 Z2-2
Z2 = Z1 Z0
= [1+i] [i]
Z2 = i - 1
now substitute n= 3;
Z3 = Z3-1 Z3-2
= Z2 Z1
= [i -1 ] [i +1]
= i2 - 1 = -2
Z3 = -2
For n=6, we can get Z6 = 16i
Therefore, for any divisible by 3, it has either only real part or only imaginary part.
In conclusion, Re(Zn) Im(Zn) = 0 if and only if 3 | n, as for any other n. Both imaginary and real parts exist.