question archive Let Z0 = I, Z1 = 1+i, and for n ≥ 2 define Zn = Zn−1Zn−2

Let Z0 = I, Z1 = 1+i, and for n ≥ 2 define Zn = Zn−1Zn−2

Subject:MathPrice:2.86 Bought3

Let Z0 = I, Z1 = 1+i, and for n ≥ 2 define Zn = Zn−1Zn−2. Prove that, for every non-negative integer n, Re(zn) Im(zn) = 0 if and only if 3 | n.

 

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Z0 = i

Z1 = 1 + i

 

for n ≥ 2 , Zn = Zn-1 Zn-2

 

we substitute n =2 to Zn = Zn-1 Zn-2;

 

Z2 = Z2-1 Z2-2

Z2 = Z1 Z0

= [1+i] [i]

Z2 = i - 1

 

now substitute n= 3;

 

Z3 = Z3-1 Z3-2

= Z2 Z1

= [i -1 ] [i +1]

= i2 - 1 = -2

Z3 = -2

 

For n=6, we can get Z6 = 16i

 

Therefore, for any divisible by 3, it has either only real part or only imaginary part.

 

In conclusion, Re(Zn) Im(Zn) = 0 if and only if 3 | n, as for any other n. Both imaginary and real parts exist.