question archive Solution : The frequency of the first wire must be 242242 Hz

Solution : The frequency of the first wire must be 242242 Hz

Subject:PhysicsPrice: Bought3

Solution : The frequency of the first wire must be 242242 Hz.

Explanation : Solving this problem requires knowing the following concepts,

  • Speed of propagation of a wave in a string : When a string of linear mass density (mass per unit length) μμ is held at a tension of TT, waves in the string propagate at a speed given by,                                     v=Tμ−−√                                    v=Tμ Since the tension (TT) of the wire is held constant the speed of propagation of the wave along the string (vv) is also a constant.

  • Standing Waves & : The wavelength and frequencies of the various modes of standing waves (harmonics) are related to the string length (LL) as:     λn=2Ln;    fn=vλn=nv2L=nL.v2    λn=2Ln;    fn=vλn=nv2L=nL.v2

Because vv is a constant, the frequency of a particular mode (fnfn) depends only on the string length (LL). A shorter string produces a higher frequency while a long string produces a lower frequency.

fn(L1)=nL1.v2;    fn(L2)=nL2.v2;    fn(L1)fn(L2)=L2L1−(1)fn(L1)=nL1.v2;    fn(L2)=nL2.v2;    fn(L1)fn(L2)=L2L1-(1)

  • Formation of Beats : Beats form as a result of the superposition of two waves that differ slightly in their frequencies. The beat frequency is equal to the frequency difference between the interacting waves.

                        fbeat=?ftest−fref?                        fbeat=?ftest-fref?

This Problem : Let fofo be the frequency of the reference string, which is what we are interested in finding.

As the length of the test string increases from L1=120L1=120 cm to L2=122L2=122 cm, its frequency decreases from f1f1 to f2f2.

From Equation (1)(1) : f1f2=L2L1=122cm120cm=6160−(2)f1f2=L2L1=122cm120cm=6160-(2)

Since there are two beats produced in both cases, the reference frequency fofo must be 22 Hz lower than f1f1 and 22 Hz higher than f2f2.        f1=fo+2;    f2=fo−2;        f1=fo+2;    f2=fo-2;

            f1f2=fo+2fo−2−(3)            f1f2=fo+2fo-2-(3)

Comparing Equations (2)(2) & (3)(3),     fo+2fo−2=6061    fo+2fo-2=6061.

Solving this equation for fofo we get fo=242fo=242 Hz.

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE