question archive Dr

Dr

Subject:Operations ManagementPrice:2.87 Bought7

Dr. Tarun Gupta, a Michigan vet, is running a rabies vaccination clinic for dogs at the local grade school. Tarun can vaccinate a dog every 3 minutes. It is estimated that the dogs will arrive independently and randomly throughout the day at a rate of one dog every 6 minutes according to a Poisson distribution. Also assume that Tarun’s vaccination (service) times are negative exponentially distributed. Compute the following

  1. The probability that Tarun is idle.                             [ Select ]                       [".12", ".35", ".5", ".25"]          

  2. The average number of dogs being vaccinated and waiting to be vaccinated.                            [ Select ]                       ["7", "4", "1", "2"]      

  3. The average time a dog waits before getting vaccinated.                             [ Select ]                       [".15", "4.7", "3", "4"]         minutes

  4. The average amount of time a dog spends waiting in line and being vaccinated.                            [ Select ]                       ["1.2", "6", "10", "3"]         minutes

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Answer:

arrival rate=L=1 per 6 min = 1/6 per min=0.167 dog per min

Service rate=m= 1 per 3 min= 1/3 per min =0.33 dog per min

Hence L/m=0.167/0.33=0.50

a) The probability that Tarun is idle.= 1- (L/m)=1-0.50=0.5

b) The average number of dogs being vaccinated and waiting to be vaccinated=Lq+L/m=L^2/(m*(m-L) +L/m=0.167^2/(0.33*(0.33-0.167))+0.506=0.027 / 0.054 + 0.50 = 1.00 = 1

c) The average time a dog waits before getting vaccinated.=Lq/L = 0.5 / 0.167 = 2.99 = 3

d) The average amount of time a dog spends waiting in line and being vaccinated= Lq/L +1/m

= 3 + (1/0.33) = 6.03 = 6