question archive The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 - 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 andC2(Q2) = 32Q2

The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 - 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 andC2(Q2) = 32Q2

Subject:MarketingPrice:2.88 Bought18

The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 - 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 andC2(Q2) = 32Q2.

a. Determine the reaction function for each firm.

b. Calculate each firm's equilibrium output.

c. Calculate the equilibrium market price.

d. Calculate the profit each firm earns in equilibrium.

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

a. Solve for Q1

P= 200 - 3(Q1+Q2)

P = 200 - 3Q1 - 3Q2

3Q1 = 200 - P - 3Q2

Q1 = 200/3 - P/3 - Q2

Solve for Q2

P= 200 - 3(Q1+Q2)

P = 200 - 3Q1 - 3Q2

3Q2 = 200 - P - 3Q1

Q2 = 200/3 - P/3 - Q1

b. Find MR for Q1

TRQ1 = P * Q1 = 200Q1 - 3Q1^2 - 3Q2*Q1

MRQ1 = 200 - 6Q1 - 3Q2

MCQ1 = 26

Set MR = MC

26 = 200 - 6Q1 - 3Q2

6Q1 = 174 - 3Q2

Q1 = 29 - 0.5Q2

find MR for Q2

TRQ2 = P * Q2 = 200Q2 - 3Q1*Q2 - 3Q2^2

MRQ2 = 200 - 3Q1 - 6Q2

MCQ2 = 32

Set MR = MC

32 = 200 - 3Q1 - 6Q2

6Q2 = 168 - 3Q1

Q2 = 28 - 0.5Q1

Q1 = 29 - 0.5(28 - 0.5Q1)

Q1 = 29 - 14 + 0.25Q1

0.75Q1 = 15

Q1 = 20

Q2 = 28 - 0.5(20)

Q2 = 20 - 10 = 10

Q2 = 10

c. P = 200 - 3(20 + 10)

P = 200 - 3(30)

P = 200 - 90

P = 110

The equilibrium price is 110, the equilibrium quantity for good 1 is 20 and the equilibrium quantity for good 2 is 10.

d.

TRQ1 = 110 * 20 = 2200

TRQ2 = 110 * 10 = 1100

TCQ1 = 26 * 20 = 520

TCQ2 = 32 * 10 = 320

Profit Q1 = 2200 - 520 = 1680

Profit Q2 = 1100 - 320 = 780