question archive The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 - 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 andC2(Q2) = 32Q2
Subject:MarketingPrice:2.88 Bought18
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 - 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 andC2(Q2) = 32Q2.
a. Determine the reaction function for each firm.
b. Calculate each firm's equilibrium output.
c. Calculate the equilibrium market price.
d. Calculate the profit each firm earns in equilibrium.
a. Solve for Q1
P= 200 - 3(Q1+Q2)
P = 200 - 3Q1 - 3Q2
3Q1 = 200 - P - 3Q2
Q1 = 200/3 - P/3 - Q2
Solve for Q2
P= 200 - 3(Q1+Q2)
P = 200 - 3Q1 - 3Q2
3Q2 = 200 - P - 3Q1
Q2 = 200/3 - P/3 - Q1
b. Find MR for Q1
TRQ1 = P * Q1 = 200Q1 - 3Q1^2 - 3Q2*Q1
MRQ1 = 200 - 6Q1 - 3Q2
MCQ1 = 26
Set MR = MC
26 = 200 - 6Q1 - 3Q2
6Q1 = 174 - 3Q2
Q1 = 29 - 0.5Q2
find MR for Q2
TRQ2 = P * Q2 = 200Q2 - 3Q1*Q2 - 3Q2^2
MRQ2 = 200 - 3Q1 - 6Q2
MCQ2 = 32
Set MR = MC
32 = 200 - 3Q1 - 6Q2
6Q2 = 168 - 3Q1
Q2 = 28 - 0.5Q1
Q1 = 29 - 0.5(28 - 0.5Q1)
Q1 = 29 - 14 + 0.25Q1
0.75Q1 = 15
Q1 = 20
Q2 = 28 - 0.5(20)
Q2 = 20 - 10 = 10
Q2 = 10
c. P = 200 - 3(20 + 10)
P = 200 - 3(30)
P = 200 - 90
P = 110
The equilibrium price is 110, the equilibrium quantity for good 1 is 20 and the equilibrium quantity for good 2 is 10.
d.
TRQ1 = 110 * 20 = 2200
TRQ2 = 110 * 10 = 1100
TCQ1 = 26 * 20 = 520
TCQ2 = 32 * 10 = 320
Profit Q1 = 2200 - 520 = 1680
Profit Q2 = 1100 - 320 = 780